浙江省普通高校统考科目高等数学考试大纲

来源:
江西成考网
发布日期
2017年04月19日

摘要:  《高等数学》考试大纲   考试要求   考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。   考试内容   一、函数、极限和连续   (一)函数   1、

  《高等数学》考试大纲

  考试要求

  考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。

  考试内容

  一、函数、极限和连续

  (一)函数

  1、理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。

  2、掌握函数的单调性、奇偶性、有界性和周期性。

  3、理解函数y =?(x)与其反函数y =?-1(x)之间的关系(定义域、值域、图像),会求单调函数的反函数。

  4、掌握函数的四则运算与复合运算; 掌握复合函数的复合过程。

  5、掌握基本初等函数的性质及其图像。

  6、理解初等函数的概念。

  7、会建立一些简单实际问题的函数关系式。

  (二)极限

  1、理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。

  2、理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。

  3、理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。会比较无穷小量的阶(高阶、低阶、同阶和等价)。会运用等价无穷小量替换求极限。

  4、理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:并能用这两个重要极限求函数的极限。

  (三)连续

  1、理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。会判断分段函数在分段点的连续性。

  2、理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。

  3、理解“一切初等函数在其定义区间上都是连续的”,并会利用初等函数的连续性求函数的极限。

  4、掌握闭区间上连续函数的性质:最值定理(有界性定理),介值定理(零点存在定理)。会运用介值定理推证一些简单命题。

  二、一元函数微分学

  (一)导数与微分

  1、理解导数的概念及其几何意义,了解